wood.

FINAL

EL 1165A DRILLING DISCHARGES FOLLOW-UP PROGRAM: DRILL CUTTINGS MEASUREMENTS AND MONITORING 2020 REPORT

Submitted to: **ExxonMobil Canada Ltd.** 20 Hebron Way St. John's, NL A1A 0L9

Submitted by: Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited

133 Crosbie Road PO Box 13216 St. John's, NL A1B 4A5

23 February 2021 Wood Project #: ME2078301

wood.

IMPORTANT NOTICE

This report was prepared exclusively for ExxonMobil Canada Ltd. by Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited (Wood). The quality of information, conclusions and estimates contained herein is consistent with the level of effort involved in Wood's services and based on: i) information available at the time of preparation, ii) data supplied by outside sources and iii) the assumptions, conditions and qualifications set forth in this report. This report is intended to be used by ExxonMobil Canada Ltd. only, subject to the terms and conditions of its contract with Wood. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

Document Name	Document No.	Revision	Prepared	Reviewed By	Date	
			БУ			
EL 1165A Drill Cuttings	TA101001 01	1.0	1.5.4	NAT		
Monitoring Report	TA1913215-01	1.0	LIM	IMI I	25 June 2020	
EL 1165A Drill Cuttings	TA101221E 02	2.0	1.5.4		00 1010 2020	
Monitoring Report	TA1913215-02	2.0	LIVI	CH/RD	08 July 2020	
EL 1165A Drill Cuttings	TA101221E 02	2.0	1.5.4	NAT	10 Dec 2020	
Monitoring Report	TA1913215-03	3.0	LIVI	IVI I	10 Dec 2020	
EL 1165A Drill Cuttings		10		IC	22 Eab 2021	
Monitoring Report		4.0	NIVI	12	23 Feb 2021	

TABLE OF CONTENTS

1.0	INTRO	DUCTION	5
	1.1	Scope	5
	1.2	Drill Cuttings Modelling	8
2.0	METHC	DOLOGY	. 10
	2.1	Synthetic on Cuttings (Condition 3.12.1)	. 10
	2.2	Pre-Drilling Survey (2018)	. 10
	2.3	Post-Drilling Survey (2020)	. 10
		2.3.1 Survey Design	. 13
		2.3.2 Visual Analysis	. 13
		2.3.3 Sediment Measurements	. 13
	2.4	Mapping	. 14
3.0	RESULT	S	. 15
	3.1	Synthetic on Cuttings (Condition 3.12.1)	. 15
	3.2	Pre-Drilling Survey (2018)	. 15
	3.3	Post-Drilling Survey (2020)	. 15
		3.3.1 Grid box (<50 m from Wellhead)	. 19
		3.3.2 Grid box (>50 m from Wellhead up to the 200 by 200 m boundary)	. 20
	3.4	Assessment of Model Predictions	. 21
4.0	SUMM	ARY	. 22
5.0	CONCL	USION	. 23
6.0	CLOSU	RE	. 24
7.0	REFERE	NCES	. 25

LIST OF TABLES

Table 1.1	Conditions met by this Survey	· (6
-----------	-------------------------------	-----	---

LIST OF FIGURES

Figure 1-1	Area map of EL 1165A Hampden K-41 well location7
Figure 1-2	Summary of drill cuttings model results for four seasonal scenarios (December, March, June, and
	September) in relation to pre-drilling survey plan9
Figure 2-1	Millennium 191 ROV used for the 2018 and 2020 EL 1165A post-drilling survey
Figure 2-2	Post-drilling survey design at EL1165A 12
Figure 2-3	Representative images of A) undisturbed seafloor sediments and B) deposited drill cuttings.13
Figure 2-4	Depth penetration measurement in patchy drill cuttings with the Millennium 191 ROV14

Figure 3-1	Representative pre-drilling survey gridbox seabed images of A) fine substrate and B) hard
	substrate
Figure 3-2	Distribution of drill cutting observations in relation to the drill center and the predicted drill
	cutting footprint and sediment penetration measurements
Figure 3-3	Representative images of drill cutting observations within the surveyed area: A) undisturbed
	seafloor without drill cuttings, B) Hampden K-41 well head and drill cutting pile, C) drill cuttings
	adjacent to the wellhead, D) drill cuttings, E) patchy drill cutting distribution, F) fine-grained drill
	cutting deposit. Lasers are 10 cm apart 18
Figure 3-4	Drill cutting observations within 50 m of the wellhead: A&B) Drill cutting pile at the wellhead, C)
	patchy drill cuttings on transect G-10 (north of the wellhead), and D) patchy drill cuttings on
	transect G-26 (south of the wellhead)
Figure 3-5	Sediment penetration (cm) measurements taken at the center point of each line. The well head is
	located on G-17. Note: measurements exceeding the length of the ruler were rounded down to
	100 cm
Figure 3-6	Seafloor observations > 50 m from the wellhead: A) Natural sedimentation (G-3), B) No visible
	drill cuttings transect (G-34), and C) Patchy drill cutting distribution (G-34)

LIST OF APPENDICES

APPENDIX A: Survey Coordinates APPENDIX B: Physical Measurement Data

ABBREVIATIONS

%	percent
C-NLOPB	Canada-Newfoundland & Labrador Offshore Petroleum Board
cm	centimeters
EA	Environmental assessment
EIS	Environmental impact statement
EL	Exploration license
EMCL	ExxonMobil Canada Ltd.
HD	High definition
km	kilometers
m	meters
mm	millimeters
MODU	Mobile offshore drilling unit
NAD 83	North American Datum 1983
ROV	Remotely operated vehicle
SBM	Synthetic-based mud
UTM	Universal Transverse Mercator
WBM	Water-based mud

1.0 INTRODUCTION

Wood Canada Environment & Infrastructure, a division of Wood Canada Limited (Wood), was contracted by ExxonMobil Canada Ltd. to conduct seabed surveys at target locations on the eastern slopes of the Flemish Pass within Exploration Licence (EL) 1165A formerly EL 1134 (Figure 1-1, EMCL 2019). This is part of the follow-up monitoring program for fish and fish habitat as set out in the Eastern Newfoundland Offshore Exploration Drilling Project Environment Impact Statement (EIS) (EMCL 2017) and commitments set out in the *Canadian Environmental Assessment Act* (2012) (CEA Agency 2019). The follow-up program is based upon a regulatory agency approved monitoring plan (EMCL 2020) that was submitted in March 2020.

The follow-up monitoring results are reported as part of a series of reports. The Drill Cuttings Monitoring Report provides details on the synthetics on cuttings monitoring, and drill cuttings deposition sampling and visual survey and addresses Decision Statement Conditions 3.12.1, 3.12.2.1, and 3.12.2.3. The Benthic Habitat Monitoring Report (Wood 2020) provides details on benthic faunal observations and addresses Decision Statement Conditions 3.12.2.2.

1.1 Scope

The objective of this follow-up program is to meet conditions 3.12.1, 3.12.2, 3.12.2.1, 3.12.2.2, and 3.12.2.3 of the Decision Statement (Table 1.1) and verify the accuracy of the predictions made during the environmental assessment as it pertains to marine fish and fish habitat and determine the effectiveness of the mitigation measures (CEA Agency 2019). Mitigation measures are outlined in the post-drilling survey plan (EMCL 2020). This report will focus on the effectiveness of the mitigations pertaining to drill cuttings including determining the drill cuttings disposition extent and thickness post-drilling, and to verify the drilling cuttings modeling from visual observations. Due to the reduced drilling program (only the top hole drilled) and after consultation with the board, the 200 by 200 m grid was surveyed and assessed. The effectiveness of the proposed mitigation measures for benthic fauna will also be evaluated and discussed in the benthic habitat monitoring report (see Wood 2020). The post-drilling survey pattern overlaps with the pre-drilling survey layout. This report will present the drill cutting observations results pertaining to conditions 3.12.1, 3.12.2.1, and 3.12.2.3.

Table 1.1Conditions met by this Survey

Condition	Condition Details
3.12.1 ³	For every well, measure the concentration of synthetic-based drilling fluids retained on discharged drilling cuttings as described in the Offshore Waste Treatment Guidelines (OWTG) to verify that the discharge meets the minimum limits set out in the Guidelines (and any applicable legislative requirements) and report the results to the Canada-Newfoundland and Labrador Offshore Petroleum Board (C-NLOPB);
3.12.2 ^{1, 2}	For the first well in each exploration licence, and for any well where drilling is undertaken in an area determined by coral and sponge surveys to be sensitive benthic habitat, and for any well located within a special area designated as such due to the presence of sensitive coral and sponge species, or a location near a special area where drill cuttings dispersion modelling predicts that drill cuttings deposition may have adverse effects, develop and implement, in consultation with Fisheries and Oceans Canada and the C-NLOPB, follow-up requirements to verify the accuracy of the environmental assessment and effectiveness of mitigation measures as they pertain to the effects of cuttings discharges on benthic habitat. Follow-up shall include:
3.12.2.1 ¹	Measurement of sediment deposition extent and thickness post-drilling to verify the drill waste deposition modeling predictions
3.12.2.2 ²	Benthic fauna surveys to verify the effectiveness of mitigation measures
3.12.2.3 ^{1, 2}	Report the information collected as identified in conditions 3.12.2.1 and 3.12.2.2, including a comparison of modelling results to <i>in situ</i> results, to the C-NLOPB within 60 days following the drilling of the first well in each exploration licence.
¹ Condition assesse ² Condition assesse ³ Condition no lon	ed in this report ed in the Benthic Habitat Report (Wood 2020) ger applicable; see Section 1.3.

Figure 1-1 Area map of EL 1165A Hampden K-41 well location.

1.2 Drill Cuttings Modelling

A combined drill cutting model of four seasonal models was used to predict the extent of released water-based muds (WBM) and synthetic-based muds (SBM) (Figure 1-2) (Wood 2018). From the combined model, discharged cuttings would drift primarily to the south and southeast of the drill center. The majority of cuttings were predicted to be deposited within 1 km of the wellhead. A reduced drilling program occurred between April and May 2020 where only a top hole was drilled. The two drilling muds are typically used at separate points during the drilling process. While drilling the top hole only WBM were used, observations were compared to the combined drill cutting model. However, SBMs were not used during the reduced drilling program and Condition 3.12.1 is not applicable for this follow-up report. The pre-drilling survey was designed in consideration of the drill cuttings model (RPS 2018). Due to a change in program scope for the K-41 well, the full drilling program plan was not implemented and only a top hole was drilled. In consultation with C-NLOPB, due to the reduced drilling program (e.g. shortened drilling time, less cuttings, no SBM use), only the 200 by 200 m boundary was surveyed and assessed in May 2020.

Figure 1-2 Summary of drill cuttings model results for four seasonal scenarios (December, March, June, and September) in relation to pre-drilling survey plan.

2.0 METHODOLOGY

2.1 Synthetic on Cuttings (Condition 3.12.1)

As part of the Offshore Waste Treatment Guidelines (OWTG), the concentration of non-aqueous synthetic based muds (SBM) retained on discharged drilling solids from all sources should be measured. However, due to the shortened drilling program, only the top hole was drilled, and only WBM was used. No SBMs were used during the Hampden K-41 drilling program.

2.2 Pre-Drilling Survey (2018)

The Hampden K-41 wellsite was previously surveyed in 2018 to assess the wellsite area against the C-NLOPB's guidance for coral colonies (RPS 2018, EMCL 2019). The Hampden K-41 wellsite is in approximately 1,180 m water depth. At this water depth the mobile offshore drilling unit (MODU) West Aquarius maintained position using a dynamic positioning system. Anchors were not used at this site and were thus not included in the survey design. From the pre-drilling survey, it was determined that there were no *L. pertusa* complexes however, there were two C-NLOPB defined coral colonies of soft corals observed within the 200 by 200 m boundary at the Hampden K-41 wellsite. The drill center location was selected to ensure the colonies were avoided and therefore drilling was authorized and proceeded at the site in the spring of 2020 (April to May). The pre-drilling survey was conducted from the MV Paul A. Sacuta with a Millennium remotely operated vehicle (ROV) (Figure 2-1).

The pre-drilling survey design consisted of a 200 by 200 m gridbox centered around the proposed drill center with 30 horizontal transect lines (200 m in length) running east to west and spaced approximately 7 m apart. The survey also included 1,000 m long transects positioned at 100 m, 200 m, 300 m, 400 m, 500 m, 750 m, 1,000 m, and 1,400 m within the proposed drill cutting footprint (RPS 2018).

2.3 Post-Drilling Survey (2020)

The post-drilling survey was conducted from the MV Paul A. Sacuta with a Millennium 191 remotely operated vehicle (ROV) from May 25th to May 26th, 2020 (Figure 2-1). The ROV was equipped with a forward-facing pan/tilt/zoom high-definition (HD) camera which was used to collect high-definition video during the duration of the survey. Still images were taken opportunistically. Video and still imagery were used to identify the benthic fauna (including corals and sponges). Scaling line lasers were spaced 10 cm apart. Due to turbidity in the water column, grid line G-6 was surveyed multiple times to collect appropriate video data. Data presented from this line consists of non-overlapping video sections.

ExxonMobil Canada Ltd. was responsible for chartering the vessel and Oceaneering Canada Ltd. was responsible for the operation of the ROV. Wood provided onboard biologists responsible for providing direction to ROV operators to ensure collection of video and images appropriate for characterizing cold-water corals and sponge groups and general characterization of fish and other invertebrates.

The survey video and imagery were geo-referenced using the ships Hi-PAP system. The HD video was encoded with a digital overlay that displayed depth (m), coordinates (UTM and NAD83), heading, date and time, and altitude above seafloor. Still images were encoded with a date/time stamp and numbered sequentially.

Figure 2-1 Millennium 191 ROV used for the 2018 and 2020 EL 1165A post-drilling survey.

Figure 2-2 Post-drilling survey design at EL1165A.

2.3.1 Survey Design

Similar to the 2018 baseline survey, the survey consisted of a 200 m by 200 m grid composed of 34 horizontal surveys lines (running east to west) spaced 6 m apart centered around the wellhead (Figure 2-2). The ROV operated in two modes: survey and sampling (measuring). Survey mode was used to describe the characteristics and extent of the drill cutting footprint and sampling mode was where the ROV took physical measurements of the seafloor with a ruler.

2.3.2 Visual Analysis

Benthic video imagery was analyzed visually for the presence or absence of deposited drill cuttings (Figure 2-3, B), which can be visibly distinct from undisturbed seafloor sediments (Figure 2-3, A) (Gates et al. 2017, Jones et al. 2019, Cochrane et al. 2019). Areas of visually distinct drill cuttings were geo-referenced and mapped. The start and end of continuous drill cuttings or consolidated patches are depicted by lines. Surficial geology, invertebrate, and fish taxa presence were analyzed along each grid transect in 50 m increments and summarized in the benthic report (Wood 2020).

2.3.3 Sediment Measurements

The visual analysis of the drill cuttings extent was further quantified and supplemented by depth penetration measurements. In consultation with C-NLOPB, due to the reduced drilling program, survey methods of the 200 x 200 m boundary were in keeping with those outlined in the Plan (EMCL 2020) with the exception that sediment cores collection was removed from the program.

A ruler (in 10 cm increments) was used to penetrate the seafloor using the ROV manipulator arm at opportune times to determine the depth of refusal which is the depth where the ruler will no longer penetrate the seafloor (Figure 2-4). These measurements are not necessarily a measurement of drill cuttings overburden thickness but may be used as an indication area with drill cuttings. Measurements were taken at the start and end of all transects within the 200 by 200 m grid survey with additional physical measurements taken opportunistically in the center of the survey lines.

Figure 2-4 Depth penetration measurement in patchy drill cuttings with the Millennium 191 ROV.

2.4 Mapping

The ROV transects were plotted using GIS software ArcGIS 10.5 (ESRI) in NAD83 datum. Fixes were taken for start and end of each transect and when measurements were taken. Overlay coordinates were used for drill cuttings delineation (visual analysis). The start and end of large drill cutting patches are depicted by lines and consolidated drill cutting patches are depicted by points. Areas within drill cutting patches that were part of the drill cutting pile were identified and mapped as points. Drill cutting transition interfaces (transitioning to natural sediment or to a different texture of drill cuttings) were also noted and mapped.

wood.

3.0 RESULTS

3.1 Synthetic on Cuttings (Condition 3.12.1)

Due to a modified drilling program, only the top hole was drilled at Hampden K-41. During the drilling of the top hole, only WBM were used and released. Condition 3.12.1 concerns the release of SBM during drilling operations and thus the condition is no longer applicable.

3.2 Pre-Drilling Survey (2018)

While the pre-drilling survey included both a 200 x 200 m gridbox around the drill center and transects within the proposed drill cutting footprint, only observations from the 200 x 200 m gridbox will be described for comparison to the post-drilling survey. Surficial substrate within the 200 x 200 m gridbox was pre-dominantly undisturbed fine substrate types (93%) (Figure 3-1) with sporadic coarse (4.1%) and medium (2.83%) substrate (Wood 2020). Benthic fauna including deep-sea corals and sponges were observed throughout the survey area with full result reported in RPS 2018 and Wood 2020. From the pre-drilling survey, two C-NLOPB coral groups were identified consisting of two groups of six soft corals. Both coral groups were observed outside of the predicted drill cuttings footprint (see Section 3.3) and drilling preceded at the site.

Figure 3-1 Representative pre-drilling survey gridbox seabed images of A) fine substrate and B) hard substrate.

3.3 Post-Drilling Survey (2020)

Drill cuttings were visibly distinct from seafloor sediments in color, texture, and particle size. Two types of drill cuttings were observed within the survey area pile cuttings and fine-grained cuttings. The pile cuttings consisted of loosely condensed white clumps (Figure 3-3, B to D). These cuttings were easily disturbed by the ROV and the clumps remained intact as they rolled across the seafloor. Fine-grained drill cuttings were dense and did not easily disperse in the water column. When touched by the ruler, the cuttings had a dense viscous consistency that stayed close to the seafloor (Figure 3-3, F). Drill cuttings were observed in three types of distributions (Figure 3-2):

- Patchy distribution was defined as occasional observations of drill cuttings <2m² in extent and >2 m apart,
- Dis-continuous distribution is where drill cuttings either occurred more frequently and/or in patches >2 m² in size and/or less than <2 m apart,
- Continuous distribution is where drill cuttings are continuous, in a drill cuttings pile, or patches are <1 m apart.

There was a concentration of drill cuttings <50 m radius around the well head with cuttings > 50 m were mostly observed to the south and southeast of the drill center, a direction consistent with predictions from the drill cuttings dispersion model (Figure 3-2). Visibly distinct drill cuttings were observed in various distribution types starting along transect G-10 to G-34. The drill cuttings model depicted in Figure 3-2 shows the predicted dispersion of both WBM and SBM although only WBM were used for this drilling campaign.

A total of 105 measurements were taken during the 2020 survey. As the physical measurements involved the depth of penetration of a ruler into the seafloor (e.g., depth of refusal) which only occurred post-drilling, measurements include and could not distinguish drill cutting accumulations and natural sediment deposition. However, several observations can be made about the drill cutting accumulations. When physical measurements were taken in visibly distinct drill cutting accumulations, the sediment appeared to be less compacted than native seafloor allowing the ROV to push the ruler more easily into the seafloor.

Figure 3-2 Distribution of drill cutting observations in relation to the drill center and the predicted drill cutting footprint and sediment penetration measurements.

Figure 3-3 Representative images of drill cutting observations within the surveyed area: A) undisturbed seafloor without drill cuttings, B) Hampden K-41 well head and drill cutting pile, C) drill cuttings adjacent to the wellhead, D) drill cuttings, E) patchy drill cutting distribution, F) fine-grained drill cutting deposit. Lasers are 10 cm apart.

wood.

3.3.1 Grid box (<50 m from Wellhead)

Visibly distinct drill cuttings were observed in various distribution types within 50 m of the wellhead from transect G-10 to G-26 (Figure 3-2). Patchy drill cutting distributions were noted from G-10 to G-12 and G14. The drill cutting pile was centered around the wellhead on transect G17 and extended into transects G16 and G18 to G20 (Figure 3-2). Based on measurements of known structure sizes of the wellhead and distances to the seafloor, drill cutting pile (Figure 3-4 A&B) ranged between 75 to >100 cm (the length of the ruler was 100 cm) (Appendix B, Table B 1). Measurements taken along the center of each gridline are presented in Figure 3-5. While both drill cutting and natural sedimentation could not be distinguished from the single measurement at each location, there is a notable increase in penetration within 50 m of the wellhead with the deepest penetrations occurring in drill cuttings pile. Measurements in the fine-grained drill cuttings adjacent to the drill cuttings pile ranged in depth from 70 to 95 cm and there is a noticeable decrease after transect G-23. Based on these observations, measurements > 80cm appear to be related to drill mud accumulations and sediment accumulations on the order of 10s of cm appear to be restricted between G13 to G21. While benthic invertebrates were absent from the drill cuttings pile, there were corals (sea pens) present on the fine-grained drill cuttings adjacent to the drill cuttings adjacent to the drill cuttings pile. Other pelagic fauna including blue hake were present (Figure 3-3, B).

Figure 3-5 Sediment penetration (cm) measurements taken at the center point of each line. The well head is located on G-17. Note: measurements exceeding the length of the ruler were rounded down to 100 cm.

3.3.2 Grid box (>50 m from Wellhead up to the 200 by 200 m boundary)

Outside of the 50 m radius from the wellhead, observations of visibly distinct drill cuttings were patchy and occurred mostly to the south and southeast (Figure 3-6 B and C). There were no visibly distinct drill cuttings in transects G-1 to G-9 (north of the wellhead). Sediment measurements within the center of the transect lines ranged between 45 to 70 cm to the north of the wellhead and 40 to 50 cm to the south (Figure 3-2). Along the east and west borders of the grid box, sediment measurements ranged between 20 to 80 cm with most measurements ranging between 40 to <60 cm (Appendix B, Table B 1).

wood.

Figure 3-6 Seafloor observations > 50 m from the wellhead: A) Natural sedimentation (G-3), B) No visible drill cuttings transect (G-34), and C) Patchy drill cutting distribution (G-34).

3.4 Assessment of Model Predictions

Survey results were comparable to the combined drill cuttings model, particularly prediction models for December and March (Figure 1-2). The model predicted that accumulations of drill cuttings >6.5 mm would occur to the south/southeast of the drill center (December model) with some patches occurring to the north/northeast (March model). Local bottom current variances with the changing seasons could account for the discrepancies in the modelled versus *in situ* observations. Drill cuttings were visibly mounded adjacent to the wellhead and accumulations appear to be 300 cm thickness <30 m from wellhead (based on comparisons with infrastructure). If the assumption that all the penetration measurements above 70 cm are related to drill muds, then it appears that those accumulations are limited to G-13 to G-23 (~36 m from wellhead). Further from the wellhead, drill cuttings observations were patchy and discontinuous in nature.

4.0 SUMMARY

The objective of this follow-up program is to meet conditions 3.12 of the Decision Statement and verify the accuracy of the predictions made during the environmental assessment (EA). The following summarizes the follow-up monitoring results with the specific Conditions.

Condition 3.12.1 – for every well, measure the concentration of synthetic-based drilling fluids retained on discharged drilling cuttings as described in the Offshore Waste Treatment Guidelines (OWTG) to verify that the discharge meets the minimum limits set out in the Guidelines (and any applicable legislative requirements) and report the results to the Canada-Newfoundland and Labrador Offshore Petroleum Board (C-NLOPB);

As detailed in Section 2.1, the modified drilling program's lack of SBM use means this condition is no longer applicable.

Condition 3.12.2.1 - Measurement of sediment deposition extent and thickness post drilling to verify the drill waste deposition modeling predictions;

Due to the limited drilling program (only top hole drilled), the post-drilling survey was focused within the 200 by 200 m gridbox. The deposition model predicted drill cutting accumulations of >6.5 mm at distances > 50 m from the drill center. Post-drilling sediment deposition and thickness were determined through both visual assessments and depth penetration measurements. Based on these combined methods, the greatest depositions of drill cuttings formed a mound around the wellhead with accumulations of approximately 300 cm thickness (based on comparisons with infrastructure). Drill cutting accumulations > 50 m from the drill center were mainly patchy in distribution Overall, the observed drill cuttings deposition within a 30 m radius from the wellhead were greater in thickness relative to model predictions.

The EA predictions indicated that the physical and chemical effects of drill cuttings was anticipated to have localized habitat disturbances less than two km from the well site. As the primary mechanism for environmental effects on benthic organisms is burial and smothering (EMCL 2017) and visible drill cuttings deposition was limited to within 100 m of the wellhead, the potential effects are within what was assessed for the Eastern Newfoundland Offshore Exploration Drilling Program.

Condition 3.12.2.2 - Benthic fauna surveys to verify the effectiveness of mitigation measures; This condition is discussed in the EL1165A Benthic Habitat Monitoring Report (Wood 2020). The report concluded that pre- and post-drilling surveys observed similar benthic fauna species presences and abundances.

Condition 3.12.2.3 – Report the information collected as identified in conditions 3.12.2.1 and 3.12.2.2, including a comparison of modelling results to in situ results, to the C-NLOPB within 60 days following the drilling of the first well in each exploration licence.

As identified directly above and in the preceding sections of this report, model results were compared to in situ results and found that cuttings were more localized with higher thicknesses relative the model's predictions.

5.0 CONCLUSION

Based on knowledge gained from EMCL's operations experience completing various drilling operations in the Jeanne d'Arc Basin, it is reasonable to conclude that the risks associated with drill cuttings release seen in the Flemish Pass are inconsequential. This conclusion is further supported by the following:

- Smothering effects of drill cuttings have been demonstrated through our operations to be limited to within 500 m of a release site based on effects monitoring in the shallow water of the Jeanne d'Arc Basin,
- Relative to releases in shallow water, the seafloor thickness can be expected to be less due to longer residence time in the water column and increased lateral dispersion and loss of fines to the water column,
- Relative to releases in shallow water, the SOC concentration reaching the seafloor can also be expected to be less due to longer residence time in the water column and transition of fluid into the water phase, and
- In shallow water such as the Jeanne d'Arc Basin, effects associated with multiple years of drilling by multiple operators have been demonstrated to be limited, minor and acceptable to the C-NLOPB. These conclusions were reached when SOC limit were at 15% whereas the present day limit is 6.9%.

If additional measurements required to inform mitigations for future exploration campaigns, consideration could be given to affixing graduated posts to the seafloor at predetermined intervals (ex. 100m, 250m, and 500m) during the initial pre-drill survey. This would provide a zero-reference baseline and during the post-drill survey the amount of cuttings dispersed at each point could be visually estimated.

6.0 **CLOSURE**

This report of the drill cutting extent observed at EL 1165A has been prepared for the exclusive use of ExxonMobil Canada Ltd.. The project was conducted using standard practices by qualified Wood staff and in accordance with verbal and written requests from the client.

Yours sincerely,

Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited

Prepared by:

Jac Miles

Lara L Miles, M.S.c. Intermediate Ecologist

Nillar

Kyle Millar, M.Sc. **Environmental Biologist**

Justin So, M.S.c. Biologist

Reviewed by:

Mike Teasdale, M.Sc. Senior Biologist

7.0 **REFERENCES**

- Amec Foster Wheeler. 2017. Statoil Canada Ltd.-Flemish Pass Exploration Drilling Project 2018-2028, ExxonMobil
 Canada Ltd.-Eastern Newfoundland Offshore Exploration Drilling Project 2018-2030: Drill Cuttings
 Modelling. Report prepared for Statoil Canada Ltd. And ExxonMobil Canada Properties Ltd. Amec Foster
 Wheeler Project No. TF1654118. 131.
- CEA Agency (Canadian Environmental Assessment Agency). 2019. Decision statement issued under Section 54 of the Canadian Environmental Act, 2012.
- Cochrane, S. K. J., Ekehaug, S., Pettersen, R., Refit, E. C., Hansen, I. M., Aas, L. M. S. (2019). Detection of deposited drill cuttings on the sea floor-A comparison between underwater hyperspectral imagery and the human eye. *Marine Pollution Bulletin*. 145:67-80.
- EMCL (ExxonMobil Canada Ltd.). 2017. Eastern Newfoundland Offshore Exploration Drilling Project Environmental Impact Statement. https://www.ceaa-acee.gc.ca/050/documents/ p80132/121318E.pdf
- EMCL (ExxonMobil Canada Ltd.). 2019. Eastern Newfoundland Offshore Geophysical, Geochemical, Environmental and Geotechnical Programs 2015-2024 2019 Environmental Assessment Update. Page ii + 77 p. TA1913215, Report prepared by Wood Environment & Infrastructure Solutions for ExxonMobil Canada Ltd..
- EMCL (ExxonMobil Canada Ltd.). 2020. 2019 Eastern Newfoundland Offshore Exploration Drilling Project- EL 1134 and EL 1135. Drilling discharges follow-up program: drill cutting measurements and benthic habitat monitoring. Prepared by Wood Environment & Infrastructure Solutions for ExxonMobil Canada Ltd..
- EMCL (ExxonMobil Canada Ltd.). 2020. EL 1165A drilling discharges follow-up program: Benthic Habitat Monitoring 2020 Report. Prepared by Wood Environment & Infrastructure Solutions for ExxonMobil Canada Ltd..
- Gates, A. R., Benfield, M. C., Booth, D. J., Fowler, A. M., Skropeta, D., Jones D. O. B. (2017). Deep-sea observations at hydrocarbon drilling locations: Contributions from the SERPENT Project after 120 field visits. *Deep-sea Research II.* 137:463-479
- Jones, D. O. B., Gates, A. R., Huvenne, V. A. I., Phillips, A. B., Bett, B. J. (2019). Autonomous marine environmental monitoring: Application in decommissioned oil fields. *Science of the Total Environment*. 668:835-853
- RPS Energy Canada Ltd. 2018. Cold Water Coral and Sponge Report August 2018 Flemish Pass EL1135 Offshore Newfoundland. CS00415.1, Made for ExxonMobil Canada Properties.
- Wood. 2020. EL1165A Drilling discharges follow-up program: drill cuttings measurements and monitoring 2020 report. Wood Project #: ME2078301

APPENDIX A: SURVEY COORDINATES

			UTM Coordinates (NAD83, Zone 22)					
Transect	Transect Length (m) Start		Start Northing	End Easting	End Northing			
G-01	205.9	814268.37	5214530.6	814474.54	5214532.6			
G-02	216.7	814478.97	5214524.6	814262.7	5214525.5			
G-03	200	814271.12	5214519.1	814471.12	5214517.3			
G-04	200.6	814468.65	5214510.6	814268.31	5214515.2			
G-05	201.9	814265.67	5214507.5	814467.61	5214510.5			
G-06	151	814467.69	5214501.5	814267.32	5214502.2			
G-07	205.7	814471.95	5214495.6	814266.74	5214499.5			
G-08	202.2	814270.64	5214487.1	814472.34	5214485.1			
G-09	200	814467.96	5214484.2	814268.14	5214483.9			
G-10	202.5	814269.04	5214476.9	814471.74	5214473.3			
G-11	200	814467.9	5214473.6	814268.2	5214471.5			
G-12	200.5	814268.1	5214464.1	814468.6	5214465.9			
G-13	202.1	814469.6	5214460	814267.4	5214461			
G-14	201.8	814269.2	5214454.3	814471	5214453			
G-15	202.9	814472.2	5214446.9	814268.9	5214448.5			
G-16	203.1	814267.8	5214442	814470.8	5214441.7			
G-17	207.3	814476.2	5214434.8	814269	5214435.1			
G-18	203.9	814266.9	5214431	814471.3	5214428.3			
G-19	204.3	814470.9	5214422.5	814266.4	5214422.6			
G-20	206.1	814262	5214416.8	814468.5	5214417.4			
G-21	207.4	814472.1	5214408.2	814262.9	5214411.3			
G-22	203.9	814273.7	5214403.8	814477.9	5214405.3			
G-23	203.9	814472.7	5214399.1	814268.5	5214399.1			
G-24	203.4	814266.8	5214391.2	814470.5	5214392.7			
G-25	215.7	814477.2	5214386.2	814262.4	5214387.2			
G-26	209.9	814261.9	5214382.9	814471.8	5214381.2			
G-27	200	814269.8	5214382.9	814467.9	5214374.9			
G-28	210	814469.8	5214368.1	814259.4	5214370.9			
G-29	204.3	814262.4	5214364	814467.3	5214359.3			
G-30	210.5	814473.9	5214357.5	814263.3	5214359.4			
G-31	205.5	814265.3	5214355.4	814470.4	5214351.7			
G-32	211.5	814480.3	5214346	814268.3	5214348.1			
G-33	206.9	814264.3	5214338.2	814471.8	5214338.8			
G-34	202.8	814468.1	5214329	814265.5	5214330.4			

Table A-1 Start and end coordinates for the central box grid surveyed in EL 1165A

APPENDIX B: PHYSICAL MEASUREMENT DATA

wood.

Table B 1Physical measurements with ROV deployed ruler.

Grid	Moocuromont ID	Northing	Facting (m)	Depth	Measurement	Drill Cutting	Crid	Measurement ID	Northing (m)	Easting (m)	Depth	Measurement	Drill Cutting
Gna	measurement_ID	(m)	Easting (m)	(m)	(cm)	(Y/N/DCP)	Grid	weasurement_ID	Northing (m)	Easting (m)	(m)	(cm)	(Y/N/DCP)
GL-34	Measurement 1	5214328.938	814468.218	1178.736	20	Y	GL-17	Measurement 52	5214434.732	814476.152	1179.796	45	N
GL-34	Measurement 2	5214329.805	814374.269	1178.833	50	Y	GL-17	Measurement 53	5214434.43	814374.713	1177.987	> 100	DCP
GL-34	Measurement 3	5214330.416	814265.399	1178.483	40	N	GL-17	Measurement 54	5214434.861	814268.89	1179.783	50	N
GL-33	Measurement 4	5214338.221	814264.357	1178.811	45	N	GL-16	Measurement 55	5214442.068	814267.923	1179.621	50	N
GL-33	Measurement 5	5214333.399	814370.081	1179.661	45	Y	GL-16	Measurement 56	5214439.326	814369.021	1178.874	> 100	DCP
GL-33	Measurement 6	5214338.542	814471.303	1178.542	50	Y	GL-16	Measurement 57	5214441.61	814471.032	1179.653	50	N
GL-32	Measurement 7	5214345.766	814480.153	1178.92	35	Y	GL-15	Measurement 58	5214446.92	814472.243	1179.778	55	N
GL-32	Measurement 8	5214347.187	814373.075	1180.316	50	Y	GL-15	Measurement 59	5214449.282	814369.814	1179.975	95	DCP
GL-32	Measurement 9	5214347.918	814268.631	1180.227	50	N	GL-15	Measurement 60	5214448.72	814269.371	1180.143	55	Y
GL-31	Measurement 10	5214355.405	814265.179	1180.323	50	N	GL-14	Measurement 61	5214454.448	814269.153	1180.101	50	N
GL-31	Measurement 11	5214347.482	814367.084	1180.165	50	Y	GL-14	Measurement 62	5214451.759	814368.023	1179.777	85	DCP
GL-31	Measurement 12	5214351.551	814470.652	1180.411	50	Y	GL-14	Measurement 63	5214452.772	814470.92	1179.621	50	N
GL-30	Measurement 13	5214357.409	814473.731	1180.089	50	Y	GL-13	Measurement 64	5214459.876	814469.959	1179.559	50	N
GL-30	Measurement 14	5214359.472	814371.625	1180.367	50	Y	GL-13	Measurement 65	5214459.849	814368.336	1180.089	70	DCP
GL-30	Measurement 15	5214359.398	814263.257	1180.191	45	N	GL-13	Measurement 66	5214461.302	814267.818	1180.345	65	N
GL-29	Measurement 16	5214364.041	814262.687	1180.662	40	N	GL-12	Measurement 67	5214464.26	814267.963	1180.486	50	N
GL-29	Measurement 17	5214362.293	814366.465	1180.508	50	Y	GL-12	Measurement 68	5214464.308	814368.591	1180.613	70	DCP
GL-29	Measurement 18	5214359.46	814466.982	1180.388	50	N	GL-12	Measurement 69	5214465.596	814468.475	1180.688	55	N
GL 28	Measurement 19	5214367.754	814469.773	1180.906	50	Y	GL-11	Measurement 70	5214473.568	814467.672	1180.95	50	N
GL 28	Measurement 20	5214373.204	814368.789	1180.312	40	Y	GL-11	Measurement 71	5214470.359	814368.661	1180.419	70	DCP
GL 28	Measurement 21	5214370.819	814259.748	1180.726	50	N	GL-11	Measurement 72	5214471.942	814268.518	1180.407	50	N
GL-27	Measurement 22	5214378.663	814264.921	1180.494	55	N	GL-10	Measurement 73	5214476.588	814268.94	1180.783	55	N
GL-27	Measurement 23	5214375.467	814362.874	1179.934	50	Y	GL-10	Measurement 74	5214471.578	814375.958	1180.236	90	N
GL-27	Measurement 24	5214374.861	814468.802	1179.992	45	N	GL-10	Measurement 75	5214473.343	814471.459	1180.62	55	N
GL-26	Measurement 25	5214381.162	814471.988	1180.793	30	N	GL-09	Measurement 76	5214484.282	814468.169	1180.569	50	N
GL-26	Measurement 26	814366.624	5214381.213	1180.041	55	Y	GL-09	Measurement 77	5214485.777	814369.907	1180.563	70	-
GL-26	Measurement 27	5214382.948	814262.09	1180.244	35	N	GL-09	Measurement 78	5214484.543	814268.789	1180.469	55	N
GL-25	Measurement 28	5214386.217	814477.357	1180.622	45	N	GL-08	Measurement 79	5214487.409	814270.329	1180.714	60	N
GL-25	Measurement 29	5214389.949	814369.608	1180.081	55	Y	GL-08	Measurement 80	5214486.526	814365.797	1180.608	60	N
GL-25	Measurement 30	5214387.07	814261.654	1180.456	50	N	GL-08	Measurement 81	5214485.4	814472.513	1180.264	60	N
GL-24	Measurement 31	5214391.3	814266.788	1180.431	50	N	GL-07	Measurement 82	5214495.677	814472.084	1180.064	45	N
GL-24	Measurement 32	5214391.682	814360.606	1180.336	50	Y	GL-07	Measurement 83	5214502.633	814370.045	1180.42	50	N
GL-24	Measurement 33	5214392.829	814470.167	1180.117	45	N	GL-07	Measurement 84	5214497.946	814266.39	1179.525	60	N
GL-23	Measurement 34	5214399.19	814472.695	1180.336	45	N	GL-06	Measurement 85	5214504.482	814265.099	1179.796	45	N
GL-23	Measurement 35	5214398.817	814376.574	1180.085	70	Y	GL-06	Measurement 86	5214500.81	814365.539	1179.747	45	N
GL-23	Measurement 36	5214398.864	814268.779	1180.264	50	N	GL-06	Measurement 87	5214500.268	814472.033	1180.141	50	N
GL-22	Measurement 37	5214403.758	814273.994	1180.555	45	N	GL-06	Measurement 103	5214501.751	814465.004	1179.401	70	N
GL-22	Measurement 38	5214401.527	814363.208	1180.372	90	Y	GL-06	Measurement 104	5214502.496	814359.493	1178.963	*	N
GL-22	Measurement 39	5214405.299	814477.866	1180.74	50	N	GL-06	Measurement 105	5214500.988	814267.14	1179.031	80	N
GL-21	Measurement 40	5214408.429	814470.342	1180.676	50	N	GL-05	Measurement 100	5214507.53	814265.828	1178.819	50	N
GL-21	Measurement 41	5214413.149	814369.695	1180.651	75	Y	GL-05	Measurement 101	5214506.653	814367.349	1179.085	65	N
GL-21	Measurement 42	5214411.377	814262.914	1180.436	45	N	GL-05	Measurement 102	5214510.623	814467.751	1178.951	40	N
GL-20	Measurement 43	5214416.85	814262.252	1180.033	70	N	GL-04	Measurement 97	5214510.389	814468.734	1179.505	55	N
GL-20	Measurement 44	5214417.857	814367.447	1179.986	90	DCP	GL-04	Measurement 98	5214520.658	814373.164	1179.337	55	N
GL-20	Measurement 45	5214417.373	814468.375	1180.405	50	N	GL-04	Measurement 99	5214515.242	814268.148	1179.349	50	N
GL-19	Measurement 46	5214422.567	814470.631	1180.366	50	N	GL-03	Measurement 94	5214519.041	814271.162	1179.184	70	N
GL-19	Measurement 47	5214422.872	814371.267	1179.727	80	DCP	GL-03	Measurement 95	5214519.943	814366.036	1178.666	55	N
GL-19	Measurement 48	5214422.395	814266.381	1180.558	50	N	GL-03	Measurement 96	5214517.325	814470.75	1179.103	55	N
GL-18	Measurement 49	5214430.989	814267.174	1180.151	40	N	GL-02	Measurement 91	5214524.441	814479.062	1178.783	55	N
GL-18	Measurement 50	5214428.456	814366.945	1179.019	75	DCP	GL-02	Measurement 92	5214527.566	814373.208	1179.182	45	N
GL-18	Measurement 51	5214428.742	814471.03	1179.739	45	N	GL-02	Measurement 93	5214525.445	814262.397	1179.123	70	N
DCP- m	easurment taken with	in the Drill Cutt	ing Pile				GL-01	Measurement 88	5214530.644	814268.491	1179.598	65	N
Y- Yes, I	measurement was tak	en within visible	drill cuttings				GL-01	Measurement 89	5214532.115	814367.19	1179.213	65	N
N- No, I	neasurement was no not visible	t taken within vi	sible drill cutting	Js			GL-01	Measurement 90	5214532.562	814474.397	1178.745	55	N
- ruier	IOT VISIDIE						_						